资源类型

期刊论文 268

年份

2023 19

2022 24

2021 18

2020 14

2019 12

2018 11

2017 17

2016 9

2015 15

2014 20

2013 6

2012 13

2011 8

2010 10

2009 14

2008 13

2007 12

2006 9

2005 7

2004 3

展开 ︾

关键词

人工智能 2

参数估计 2

工艺参数 2

1)幂模型 1

2R-1C模型;嵌入式系统;参数估计;非迭代方法;二次型 1

BP神经网络 1

B样条函数 1

CO2泡沫 1

COVID-19 1

GM(1 1

HY-2 1

HY-2 卫星 1

Hilbert变换 1

ISO 18186 1

LS算法 1

MS-CETSA 1

NARMA模型 1

SCEM-UA 1

展开 ︾

检索范围:

排序: 展示方式:

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

Experimental study of modal parameter identification in a simulated ambient-excited structure

JI Xiaodong, QIAN Jiaru, XU Longhe

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 281-285 doi: 10.1007/s11709-007-0036-9

摘要: Structure modal parameter online identification was used to monitor the structural health as evidenced by changes in the vibration characteristics. The natural excitation technique and the eigensystem realization algorithm were combined to identify the modal parameters in the time domain of a structure excited by simulated ambient vibrations. The mass-normalized mode shapes were obtained from the eigen-sensitivity analysis. The experimental modal analysis was performed on a two-story steel braced frame model excited by simulated ambient vibrations and hammer impacts. The mass-normalized mode shapes were acquired by changing the structural mass and by eigen-sensitivity analy sis. From finite element analysis results and the experimental data, it is shown that this method is effective.

关键词: eigensystem realization     eigen-sensitivity analysis     realization algorithm     vibration     effective    

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 112-120 doi: 10.1007/s11709-010-0069-3

摘要: A novel damage assessment method based on the decay ratio of acceleration signals (DRAS) was proposed. Two experimental tests were used to show the efficiency. Three beams were gradually damaged, and then the changes of dynamic parameters were monitored from initial to failure state. In addition, a new method was compared with the linear modal-based damage assessment using wavelet transform (WT). The results clearly show that DRAS increases in linear elasticity state and microcrack propagation state, while DRAS decreases in macrocrack propagation state. Preliminary analysis was developed considering the beat phenomenon in the nonlinear state to explain the turn point of DRAS. With better sensibility of damage than modal parameters, probably DRAS is a promising damage indicator in damage assessment.

关键词: damage assessment     decay ratio of acceleration signals (DRAS)     wavelet transform (WT)     modal analysis     reinforced concrete beam     beat phenomenon    

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 344-354 doi: 10.1007/s11709-011-0124-8

摘要: An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented. The bridge is characterized by a system of post-tensioned and simply supported beams. The dynamic characteristics of the bridge, i.e. natural frequencies, mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm (ERA). Then, these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms (GA) to solve it. From the results of the ambient vibration test of this type of bridge, it is concluded that two-dimensional mode shapes exist: in the longitudinal and transverse; and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating. The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.

关键词: modal analysis     parameter identification     ambient vibration test     Eigensystem Realization Algorithm (ERA) method     finite element method    

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 64-77 doi: 10.1007/s11465-014-0322-x

摘要:

To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter’s effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

关键词: impact mechanics     contact     joint behaviour     modal analysis     parameter study    

Approximation of structural damping and input excitation force

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 244-254 doi: 10.1007/s11709-016-0371-9

摘要: Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

关键词: structural modal parameters     damping identification method     input excitation force identification     Inverse problem    

Parameter identification of interconnected power system frequency after trip-out of high voltage transmission

Xuzhan ZHOU,Shanshan LIU,Mingkun WANG,Yiping DAI,Yaohua TANG

《能源前沿(英文)》 2014年 第8卷 第3期   页码 386-393 doi: 10.1007/s11708-014-0323-9

摘要: Accurate modeling and parameters of high voltage (HV) grid are critical for stability research of system frequency. In this paper, simulation modeling of the system frequency was conducted of an interconnected power system with HV transmission lines in China. Based on recorded tripping data of the HV transmission lines, system parameters were identified by using genetic algorithm (GA). The favorable agreement between simulation results and recorded data verifies the validity of gird models and the accuracy of system parameters. The results of this paper can provide reference for the stability research of HV power grid.

关键词: high voltage (HV) grid     frequency stability parameter identification     primary frequency regulation (PFR)    

Kinematic Model Building and Servo Parameter Identification of 3-HSS Parallel Mechanism

YANG Zhi-yong, WU Jiang, HUANG Tian, NI Yan-bing

《机械工程前沿(英文)》 2006年 第1卷 第1期   页码 60-66 doi: 10.1007/s11465-005-0019-2

摘要:

Aiming at a parallel mechanism with three degrees of freedom, a method for dynamic model building and the parameter identification of its servosystem is presented. First, the reverse solution models of position, velocity, and acceleration of parallelogram branch structure are deduced, and then, its dynamic model of a rigid body is set up by using the virtual work principle. Based on the above model, a method to identify the servo parameter of the parallel mechanism is put up. In this method, the triangle-shaped input with variable frequency is adopted to offset the disadvantages of pseudorandom number sequence in parameter identification, such as dramatically changing the vibration amplitude of the motor, easily impacting the motor that results in its velocity loop to easily open, and so on. Moreover, the rotary inertia can also be identified by the additive mass. The abovementioned data will lay a solid foundation for the optimum performance of the system in the whole workspace.

关键词: building     acceleration     additive     workspace     optimum performance    

Finite element model updating of a large structure using multi-setup stochastic subspace identification

Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 965-980 doi: 10.1007/s11709-019-0530-x

摘要: In the present contribution, operational modal analysis in conjunction with bees optimization algorithm are utilized to update the finite element model of a solar power plant structure. The physical parameters which required to be updated are uncertain parameters including geometry, material properties and boundary conditions of the aforementioned structure. To determine these uncertain parameters, local and global sensitivity analyses are performed to increase the solution accuracy. An objective function is determined using the sum of the squared errors between the natural frequencies calculated by finite element method and operational modal analysis, which is optimized using bees optimization algorithm. The natural frequencies of the solar power plant structure are estimated by multi-setup stochastic subspace identification method which is considered as a strong and efficient method in operational modal analysis. The proposed algorithm is efficiently implemented on the solar power plant structure located in Shahid Chamran university of Ahvaz, Iran, to update parameters of its finite element model. Moreover, computed natural frequencies by numerical method are compared with those of the operational modal analysis. The results indicate that, bees optimization algorithm leads accurate results with fast convergence.

关键词: operational modal analysis     solar power plant structure     multi-setup stochastic subspace     bees optimization algorithm     sensitivity analysis    

Continuous dynamic monitoring of a centenary iron bridge for structural modification assessment

Carmelo GENTILE,Antonella SAISI

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 26-41 doi: 10.1007/s11709-014-0284-4

摘要: A multi-channel continuous dynamic monitoring system has been installed in a centenary iron arch bridge on late November 2011. The historic infrastructure, completed in 1889 and crossing the Adda river about 50 km far from Milan, is the most important monument of XIX century iron architecture in Italy and is still used as roadway and railway bridge. The monitoring project follows a series of preliminary ambient vibration tests carried out on the bridge since June 2009. The paper describes the bridge structure and its dynamic characteristics identified from the experimental studies developed since 2009, the installed monitoring system and the software developed in LabVIEW for automatically processing the collected data. Subsequently, the tracking of automatically identified natural frequencies over a period of about 18 months is presented and discussed, highlighting the effects of environmental and operational conditions on the bridge dynamic characteristics as well as the detection of structural changes, mainly based on natural frequencies shifts.

关键词: automated modal identification     continuous dynamic monitoring     environmental/operational effects     iron arch bridge     structural health monitoring    

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 17-25 doi: 10.1007/s11709-014-0278-2

摘要: This paper presents a new approach to estimate damage severity for shear-wall buildings using diagonal terms of a modal flexibility matrix estimated from dynamic properties. This study aims to provide a fundamental concept for quantifying the damage of realistic buildings by investigating an idealized shear-wall building. Numerical studies were performed on a 5-story shear-wall building model to validate the applicability of the presented approach, using two damage patterns. With the numerical simulations, the proposed approach accurately determined the damage ratio of the specimens. Experiments were also conducted on a 5-story shear-wall building model for which the system parameters were almost the same as those in numerical simulations. The estimated damage-quantification results from the experimental validations demonstrated that the performance of the presented method for shear-wall buildings was both suitable and accurate.

关键词: damage identification     modal flexibility     damage quantification     shear-wall buildings    

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 388-402 doi: 10.1007/s11465-016-0404-z

摘要:

Wind turbine gearbox (WTG), which functions as an accelerator, ensures the performance and service life of wind turbine systems. This paper examines the distinctive modal properties of WTGs through finite element (FE) and experimental modal analyses. The study is performed in two parts. First, a whole system model is developed to investigate the first 10 modal frequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structure and operating conditions of WTG, this study applies spring elements to the model and quantifies how the bearings and gear pair interactions affect the dynamic characteristics of WTGs. Second, the FE modal results are validated through experimental modal analyses of a 1.5 WM WTG using the frequency response function method of single point excitation and multi-point response. The natural frequencies from the FE and experimental modal analyses show favorable agreement and reveal that the characteristic frequency of the studied gearbox avoids its eigen-frequency very well.

关键词: wind turbine gearbox     modal analysis     finite element analysis     modal frequency     bearing equivalence    

Variable stiffness and damping magnetorheological isolator

Yang ZHOU, Xingyu WANG, Xianzhou ZHANG, Weihua LI

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 310-315 doi: 10.1007/s11465-009-0039-4

摘要: This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic performance of the isolator is evaluated in simulation. Experimental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.

关键词: magnetorheological (MR) fluid     stiffness     damping     mathematical model     dynamic performance     parameter identification    

非平稳环境振动下桥梁的阻尼识别

Sunjoong Kim, Ho-Kyung Kim

《工程(英文)》 2017年 第3卷 第6期   页码 839-844 doi: 10.1016/j.eng.2017.11.002

摘要:
本研究着重于使用非平稳的环境振动数据来识别桥梁的阻尼比。我们通常使用基于输入信号的静态白噪声假设的运行模态分析(OMA)来识别使用中的桥梁的阻尼比。然而,大多数桥梁在使用时通常会受到非平稳激励,而违反这种基本假设会导致阻尼识别的不确定性。为了处理非平稳性,根据测量的响应来计算幅度调制函数,以消除由非平稳输入引起的整体趋势。采用自然激励技术(NExT)-特征系统实现算法(ERA)估算平稳过程中的阻尼比。为了提高基于OMA 的阻尼估计的准确性,在提取的平稳过程和非平稳数据之间进行比较分析,以评估消除非平稳性的效果。在信号平稳化后,第一竖向模态的阻尼比的平均值和标准偏差会减小。

关键词: 阻尼     运行模态分析     交通导致振动     非平稳     信号平稳化     调幅     大桥     斜拉     悬索    

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 420-428 doi: 10.1007/s11465-013-0281-7

摘要:

Acoustic engineers are faced with the challenge of minimising reverberation time in their designs so as to contribute to the health and well-being of those traveling by train and those on the platforms. Although the problem is easy to identify, it is not as simple to solve. The acoustical environment of a train tunnel is complex, with a variety of noise contributing factors such as train announcements, speech of commuters, ventilation systems, electrical equipment and wheel and rail noise. As a result, there is some difficulty in modeling the complete acoustic environment with computational or acoustic first principles. In this study, an experimental rig was constructed to model the acoustic behavior within a tunnel. The modal properties for the 300 Hz to 1500 Hz range, including resonances and mode shapes were identified and were shown to successfully correspond to theoretical results and a computational model created in COMSOL using Finite Element Analysis.

关键词: reverberation time     acoustic environment     modal properties     resonances    

标题 作者 时间 类型 操作

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

Experimental study of modal parameter identification in a simulated ambient-excited structure

JI Xiaodong, QIAN Jiaru, XU Longhe

期刊论文

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

期刊论文

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

期刊论文

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

期刊论文

Approximation of structural damping and input excitation force

Mohammad SALAVATI

期刊论文

Parameter identification of interconnected power system frequency after trip-out of high voltage transmission

Xuzhan ZHOU,Shanshan LIU,Mingkun WANG,Yiping DAI,Yaohua TANG

期刊论文

Kinematic Model Building and Servo Parameter Identification of 3-HSS Parallel Mechanism

YANG Zhi-yong, WU Jiang, HUANG Tian, NI Yan-bing

期刊论文

Finite element model updating of a large structure using multi-setup stochastic subspace identification

Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI

期刊论文

Continuous dynamic monitoring of a centenary iron bridge for structural modification assessment

Carmelo GENTILE,Antonella SAISI

期刊论文

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

期刊论文

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

期刊论文

Variable stiffness and damping magnetorheological isolator

Yang ZHOU, Xingyu WANG, Xianzhou ZHANG, Weihua LI

期刊论文

非平稳环境振动下桥梁的阻尼识别

Sunjoong Kim, Ho-Kyung Kim

期刊论文

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

期刊论文